Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Carbon ; 209, 2023.
Article in English | Scopus | ID: covidwho-2306451

ABSTRACT

The global pandemic of COVID-19 poses significant challenge to the recycling of disposable polypropylene (PP)-based waste masks. Herein, a simple but effective sulfonation route has been proposed to transform PP-based waste masks into value-added hard carbon (CM) anode materials for advanced sodium-ion batteries. The sulfonation treatment improves the thermal stability of the PP molecule, preventing their complete decomposition and the release of massive gas molecules during the carbonization process. Meanwhile, the oxygen functional groups introduced during sulfonation effectively facilitates the cross-linking between the PP chains, hindering the rearrangement of carbon microcrystalline structures and enhancing its structural disorder. As a result, the prepared hard carbon anode (CM-180) with a high disorder degree and minimal surface defects realizes a high sodium storage capacity of 327.4 mAh g−1 with excellent cycle and rate capability. In addition, when coupled with O3–NaNi1/3Fe1/3Mn1/3O2 cathode, the fabricated sodium-ion full cell delivers a high energy density of 238 Wh kg−1 and achieves an outstanding rate capability with a retained capacity of 75 mAh g−1 even at an ultrahigh current rate of 50 C. This work offers a novel insight into transforming the waste masks to value-added hard carbons with promising prospects for sodium-ion batteries. © 2023

2.
Energy and Fuels ; 37(1):702-710, 2023.
Article in English | Scopus | ID: covidwho-2242641

ABSTRACT

With the prevalence of COVID-19, wearing medical surgical masks has become a requisite measure to protect against the invasion of the virus. Therefore, a huge amount of discarded medical surgical masks will be produced, which will become a potential hazard to pollute the environment and endanger the health of organisms without our awareness. Herein, a green and cost-effective way for the reasonable disposal of waste masks becomes necessary. In this work, we realized the transformation from waste medical surgical masks into high-quality carbon-nickel composite nanowires, which not only benefit the protection of the environment and ecosystem but also contribute to the realization of economic value. The obtained composite carbon-based materials demonstrate 70 S m-1conductivity, 5.2 nm average pore diameters, 234 m2g-1surface areas, and proper graphitization degree. As an anode material for lithium-ion batteries, the prepared carbon composite materials demonstrate a specific capacity of 420 mA h g-1after 800 cycles at a current density of 0.2 A g-1. It also displays good rate performance and decent cycling stability. Therefore, this study provides an approach to converting the discarded medical surgical masks into high-quality carbon nanowire anode materials to turn waste into treasure. © 2023 American Chemical Society. All rights reserved.

3.
Canadian Journal of Chemical Engineering ; 2023.
Article in English | Scopus | ID: covidwho-2241608

ABSTRACT

Benzalkonium chloride (BAC) is a key ingredient in many cleaning and disinfectant products due to it being an effective antiviral and biocidal agent. Because of its prolific use, especially following the recent global COVID pandemic, increased levels of BAC have been found in the environment, in particular, in wastewater, where it has negative impacts due to its toxicity. This necessitates an effective treatment for BAC in wastewater to reduce its toxicity. In this work, electrochemical oxidation of BAC on a boron-doped diamond anode was studied to successfully remove BAC. The electrochemical measurements performed at different current densities confirmed that BAC was completely oxidized within 20 min of treatment at 50 mA/cm2. However, chemical oxygen demand (COD) measurements showed that around 50% of the initial BAC was completely mineralized after 1 h of degradation at 50 mA/cm2, while the remaining electrooxidation of BAC resulted in the production of transformation products. © 2023 Canadian Society for Chemical Engineering.

4.
Green Chemistry ; 2022.
Article in English | Web of Science | ID: covidwho-2016864

ABSTRACT

As the economy started to recover from the COVID pandemic, the price of Li2CO3 skyrocketed to its highest. This situation has aggravated concerns about the supply chain for lithium-ion batteries (LIBs). Recycling spent LIBs is a potential solution to alleviate the bottleneck of the supply chain and prevent environmental pollution, and has attracted lots of attention. However, lithium recycling is generally disregarded because of the complex recycling process and its low recycling efficiency. Here, in this work we developed a sustainable lithium recovery process, which can selectively leach and recover lithium with formic acid before recycling valuable metals. With the reported method, lithium can be 99.8% recovered from layered oxide cathode materials with 99.994% purity. In addition, this lithium recovery process is affordable, compared to the typical hydrometallurgical process, by saving 11.15% per kilogram of spent LIBs. Therefore, this research provided a new solution to eliminating the effects of lithium ions on valuable metal separation and the co-precipitation reaction and precluding the influence of other metal ions on lithium recovery. This simplified lithium recovery process provides new opportunities for sustainable recycling of LIBs and economical restoration of the lithium supply chain.

5.
Inorganics ; 10(1):5, 2022.
Article in English | ProQuest Central | ID: covidwho-1635275

ABSTRACT

Rechargeable lithium-metal batteries (LMBs), which have high power and energy density, are very attractive to solve the intermittence problem of the energy supplied either by wind mills or solar plants or to power electric vehicles. However, two failure modes limit the commercial use of LMBs, i.e., dendrite growth at the surface of Li metal and side reactions with the electrolyte. Substantial research is being accomplished to mitigate these drawbacks. This article reviews the different strategies for fabricating safe LMBs, aiming to outperform lithium-ion batteries (LIBs). They include modification of the electrolyte (salt and solvents) to obtain a highly conductive solid–electrolyte interphase (SEI) layer, protection of the Li anode by in situ and ex situ coatings, use of three-dimensional porous skeletons, and anchoring Li on 3D current collectors.

SELECTION OF CITATIONS
SEARCH DETAIL